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ABSTRACT

The second term has been obtained in the asymptotic series
for the second (longitudinal) adiabatic invariant of charged
particle motion in a static magnetic field. his correction to the
lowest order invariant has two sources: the correctiorn to the
lowest order magnetic moment and the integratel effect of the
guiding-center drift across the field lines. The second term is
found to vanish at the mirror points; therefore during its motion
between mirror reflections, the guiding center deviates from the
surface on which the lowest order invariant is constant and

intersects this surface at reflection.
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I. INTRODUCTION

This paper contains a systematic derivation of the next
term beyond the lowest order for the second adiabatic invariant
of a charged particle in a magnetic field. A charged particle in an
electromagnetic field possesses up to three approximate invariants
of its motion. The first is the Alfvén invariant' or magnetic moment
‘if/2moB, wherejaLis the component of particle momentum my perpen-
dicular to the magnetic field B. If there is an electric fieldiELis
the momentum in the reference frame in which the electric field
vanishes. Magnetic moment invariance requires that {ields vary
slowly compared to the particle gyration period and gradually

compared to the gyration radius. The second invariant?’ 2

is an
invariant of the guiding-center equations of motion, which are
equations obtained by averaging over the particle gyration about
the magnetic field line. The second invariant is therefore, also
an invariant of the particle motion, from which the guiding-center
equations are derived. This second invariant exists when the
guiding-center motion along a field line is nearly periodic; the
invariant is f?mds, where ﬁiis the component of guiding-center
momentum parallel to B, and the integral extends over a period of
the motion in s, which is distance along the line. The third
invariant® is an invariant of equations of motion resulting when
the guiding-center equations are averaged over the periodic motion

along the field line (and therefore is an invariant of the particle

motion also); it exists when these doubly averaged equations have



nearly periodic solutions, and this occurs when the surfaces of
constant second invariant are topologically cylinders. The third
invariant ¢ is the magnetic flux threading a second invariant
cylinder. 1Its invariance is trivially true in static fields and
becomes of significance only in time-dependent fields.

The three invariants described above are really only the
lowest orders of three asymptotic series of the form
constant = Mg + eM; + €Mz 4 ccmmmmn- ,
constant = Jo + €J1 + €°J2 4 -c--mu-- , (1)
constant = &0 + €®; + €°82 4 -------- ,
where Mg is pf/ZmoB, Jo is §ﬁ%ds, and §o is the magnetic flux threading
through a surface of constant Jo. The expansion parameter ¢ is the
mass-to-charge ratio of the particle. The invariance of Mg, Jo, and
%o can be surmised (and demonstrated) by rather physical methods,
while to obtain higher order terms in each series may require deep
insight or a systematic method., In the present paper we use a
systematic method due to Kruskal® to obtain J; for static magnetic
fields. Although the second invariant exists whenever the motion
along a field line is nearly periodic, we confine ourselves to the
case where the motion is oscillatory between two mirrors. The case
where the particle traverses a closed field line always in the same
sense must be treated separately in the systematic derivation.
However, a direct derivation of Jy to be given at the end of the
paper shows that the result is the same as for the oscillatory case.

The proof of the invariance of Jo in reference 3 is valid for the
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closed field-line case as well as for the oscillatory case.

I1. THE SYSTEMATIC METHOD

The systematic method presupposes coupled equations of motion

dx/dT = ._f_(és €), (2)

where x has a finite number N of components and f possesses a power
series expansion in the small parameter €. Furthermore, it is
required that all solutions of the system dx/dT = £(§, 0) traverse
closed trajectories in x space. The equation of motion of a charged
particle can be put into this form with € equal to m/e. The method
shows how to obtain a transformation from the N variables to another

set (gé ¢) which have the property that the equations of motion are

dz/dT = eh(z, ¢),

dg/dt = w(z, €), (3)

the important point being that ¢ does not appear on the right sides,
and that x = 5ﬂ£, ¢, €) is periodic in ¢. The vector g\has N-1
components. The transformation and the new functions h and w are
obtained as series in €.

If in addition the equations (2) are canonical, with x the

vector (p, g), then there exists the adiabatic invariant

. M) do,

constant = tﬁ&(a, ¢, €) 30

where p and g are the canonical momentum and position, and

WA A
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where the integral is over a period of @. he invariant is
obtained as a series in € and, although a function of the z
variables, may be rewritten in terms of the original x variables
by inverting the transformation. To have an invariant, it is not
really necessary that (2) themselves be canonical-only that they
be transformable into canonical equations.

The transformatior x to (z, ») is not made directly, but
for convenience by way of intermediate variables Qx, v), where y
is any vector constant on the closed, lowest-order (¢ = C)
solutions of (2), and v is an angle-like variatle specifying the
position around such closed curves.

The theory as described so far will produce only one adiatatic
invariant series (the magnetic moment), but to any order in ¢
desired, The second (and third) adiabatic invariats are obtaired
from "reduced" equations of motion as follows: it can be shown
that the Poisson bracket [ ¢, M] equals 1, which means that ¢ and l

can be used as conjugate variables in a canonical transformation

L

from (p, q) to (p', M; q', ¢) where p' and q' have each one less

A
component than p and q. (M is the sum of the magnetic moment series
o A
to the order in € to which one is working). The new Hamiltonian

m}(g', g:, M, €¢) is independent of ¢ since M equals — 3% '/3p, and

M is zero, being the first invariant. Thus the redvced system of

equations is:



(5)

If these again have the property that all solutions are closed
in (23, q') space when ¢ is zero. then a second invariant exists
~n

in terms of new z variables, which we will call z':
oA ~A

J(‘%:) = pl(zl ¢|) . w)d¢l

e 39" (6)

New intermediate variables Qx‘, L') will generally also be used.
Finally a second reduction can be performed to obtain the third
invariant. The variables and transformations are illustrated in
Fig, 1. Each transformation is carried out as a series in the
expansion parameter €.

Although (Bj, 3:, M, ¢) are shown by the arrow in Fig. 1
as coming from (Bﬁ ﬂ)s they really come from the entire first
line, since QX” v) and (EJ ®) must be found in order to determine
M. A similar statement holds from the 2nd invariant level to

the 3rd.
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With so many transformations and variables, tricks for
reducing the labor are very welcome. There are several such
shortcuts. For one thing, ¢ is never needed, since it is simpler
to use U as the integration variable in (4). Likewise in (6), u'
is to be used. Secondly, if the dz/dT equations of motion (3)
have all solutions periodic when ¢ (or another parameter) is zero,
as for Eq. (2), or if they can be transformed so that this is so,
the theory following Eq. (2) may be repeated. For the charged
particle, the equations of motion (3) for z are themselves of the
prescribed form (2) with the needed periodicity when ¢ = O, after
a trivial rescaling of the independent variable. Thus (Xj, u')
and (5:, ®') can be obtained from the z variables rather than by
the pathway of QE', q'). Furthermore, it is proved in reference (4)

A

that:

1 ' 1Y . ' ' ! ' ' ' _Qn_ﬁ.u'_z_@) s
§£(£s¢) m’ga%ﬂd(b =§B(£:¢a¢) g¢c do (7)

that is, the original canonical variables may be used. Thus the
reduced canonical variables (B:’ 9:), and QJt need not be found. The
pathway of transformations actually followed in the present calculation
is illustrated in Fig., 2. The transformation is between z and

(Y', U‘) and not between (EA’ (p) and (AZ" U')o

~a



(P’ i) &> (};, V) &> (Z, U)H(%, @) ~----- level of lst

z » ]
~ invariant

(ﬂy“', vi)e—>(z', ¢') --- level of 2nd

Z
o

invariant

Figure 2: The transformations and variables actually used in this calculation.
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Here (r, v) are the position and velocity of the particle. The

x variables can be regarded as either (Rﬁ 3) or (5,)3), since

the particle equations of motion can be written in the form of (2)
with the required properties using either set.

In (7) the right side appears to be a function of ¢ but really
is not, since the left side is not; the @ dependence of the right
side actually must disappear. This fact gives another shortcut --
namely, that any particular value of ¢ desired can be used in the
functions EKE:’ ', ¢) and S(EJ’ ¢', ¢). The choice ¢ = O greatly
reduces the algebra.

A fourth way to simplify the calculation is to choose the‘x
variables cleverly. The'z‘vector is required only to be a constant
of the lowest-order motion, and the (z, @) follow uniquely from the
QZ’ V). There clearly are infinitely many suitable choices for the:i
variables, since any function of a given‘z‘is also a constant. The
guiding principle is to choose for the components of’x_quantities
which are both simple and constant to as high an order in ¢ as
possible, even though the theory only requires‘z'to be a constant of
the lowest-order motion. For example, one component of‘x' is much
better chosen as Mg + € M, rather than just Mg alone, Similarly,
one component of;i is much better chosen as the approximate guiding-
center position than as the particle position, since the guiding

center does not move as rapidly as the particle.

Although this systematic method of calculating invariant series



in principle requires only routine labor, in practice the amount

of algebra gets out of hand rather rapidly unless the above short-
cuts are used, along with physical intuition in the choice of y.
After this long but necessary discussion of the method, we now

begin the actual calculation.

I11. THE CHARGED PARTICLE

The particle equation of motion can be written as

dr/dt a ey,

—~
o
N

dy/dT1 = v X B(x),

where x is (r, v) and T is t/e. When € is zero, r is constant and
~Mn e ~m
the second equation (8) is the equation of motion in a uniform
magnetic field B. The solution v has a constant projection along
B and is (harmonically) periodic in its two components perpendicular
to B, Thus the trajectory is periodic in x space. Let L, M, and N
faad M MA T A ~n

~ ~

be three orthogonal unit vectors, with b\parallel tolﬁ;‘ﬁ and N need

not be specified further. The y variables will be denoted by (p, o, ﬂ)
L5 Arna

and defined as

r + ey x L(x)/B(x),

o
it

(@]
1l

lV.L.I’

=Ll ¢y (9)

The choice of ﬁ‘itself instead of the guiding center was tried for

p but led to a more difficult calculation. The y components T} and O

N
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are the components of particle velocity parallel and perpendicular
to the field line at the particle position. The u variable is

chosen as

arc tan X_l‘é.ﬁ&)
« N(xr) (10)

=

_ 1
V= on

<
3

The inverse transformation can be obtained to any order desired from

v = NL(z) + ofM(r) sin v 4 N(r) cos V],

- (11)

T +€0 0 Lo~ ~
r=2 E—E)[y‘('{) sin U ~M(r) cos v],

where D & 2mu. The equations of motion for y. (du/dT is not needed)

are:

~ -~ ~ ~ h ~ ~ ~
dp/d7 = €TL(z) + e? {T]ZAI: X (L ‘OL) + o[ (M sin U + N cos v) X
B S ol

((.bi sin U + }i cos V) V}:,) + (,&‘ sin U —-é cos ) (}ﬁ sin U +£IAcos 0) V—E-ji_;
+ T]O['I;’Il sin U +~I:j‘cos V) X <£ V};) +~I.; X((};’I/: sin U + ’/{\,I: cos V) VQ]} (12)
where the : notation means contraction first of the two inner vectors
and then of the two outer ones. For example in (13b) ﬁ&lzi7é means
M9 LI

The components of z will be denoted by the Greek capitals of the
correspondinger“ components - 1.e., by (g, Z, I-I). By use of the

recursion and periodicity relations (Bl9 - B23) in reference (4), we
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obtain

P = P + 0(62), (13a)

~ ~ AA

- + ¢ , o~ ~ ~ o L~ ~
r=0 £ {ﬂzk—y_ cosu+§_\smu+ﬂ) L:VL + Mol — & MM sin v cos v +

EMN + M) sin® U + & NN sin-U cos U] ;vgd} + 0(e®), (13b)

~ ~

H="T+ _¢ }{—-T]c-(——}:'l\ cos'i)J+I;I‘sinrJ+M) L :vL - c*[~ 2 MY sin U cos U

B(p) o
AN AA 2 ~ AA ~ ~ A 2
+3(MN +M) sin U+§§&‘Lsin U cos U] :VLI+O(G ), (13¢)
v
¢ = J.o ----------- . (134)

The expression for ¢ is not needed, since u will be used as the
integration variable; (13d) is included only to show that ¢ - O
when v = O, a fact that will be used later. The €2 terms of

QB, L, H) have also been calculated, but are too lengthy to include
here, Note that choosing‘a to be the guiding center has made the ¢
contribution to P vanish, and this will afford much simplification
later,

The equations of motion for the z variables (d¢/dT is not needed)

are.
1dp € w2y (1 .oly L eZtn e2 I 3in — ami) i
ook _HL(P)+B(£>HLX(L VL) + 557 L X UB + - L (SMN - 2NM):VL

A
+ZHSL(ML VL) + 0(e”),
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An A

1ds HE o ¢ eH? : U UL : L) V- L
cdr = "2 V-L + B [Bv. MM_L,._L) - %(wa. : VI:)V’ L]

B

A AA

+ 6 PL_Z {%V [LMN + NM) :Vé] + BV ﬁ(ﬁ'l: : \7@2
B
sz An

-Bv.m_é_'lh)}f%—z—(}ﬂ_‘ VL)V'AI;-%O(GZ), (lAb)

times the order € terms of % g% + 0(e?). (l4e)

Halb

_Z
H

Since €7 is time t, the left sides are the guiding-center
velocity dP/dt, etc. The component of dP/dt perpendicular to the
field is the sum of the usual gradient-B and line-curvature drifts,
while the parallel motion has both zero-order and first-order

components. The equations for df/dt and dH/dt give
dx + H- 2
a2 =007 (15)

which is energy conservation, while those for df/dt and dR/dt give

d 3

& )= o) (16)

which is conservation of the lowest-order magnetic moment Mpo.
The so-called "guiding-center equations", which are usual in
numerical integrations designed to follow the guiding center, are

the set (see for example reference 5)



d _ » P ~ o en® -

qo = HL(P) + ——( )~I:>< (};v};) + 557 L xVB,

%(22 + H?) = constant, (17)
s2

2é(P) = constant.

This is a hybrid set, in that only some of the terms of order ¢ are
retained in dP/dt and none of them in dzZ/dt. It is simpler than
the complete set (l4) and its use has validity, as will be
discussed at the end of the paper.

At this point the next term of the magnetic mouent series can
be calculated. We will not give details, but just the result.

= - e‘{z [(NM —ﬁ&) VI: + %(NM + mN) vﬂj °HZ@ ﬁﬂ vﬂ
2B('g) A LY ~mn & A

Mo + €M,

(18)
Since the highest order term we will need in the magnetic moment
series is My, M will stand henceforth for Mo + <M;, so that dM(g)/dt
is of order €?. When expression (138) is written in terms of (r, v)
it agrees with Eq. (28) of reference (6).
We now proceed to the reduced system and the second invariant.

If we set ¢ = 0 in (14) we have

dp/dt = HL(R)

ma

~

dv/de - ~ BEV-L,

~

df/dt = 3°V-L. (19)

[



o
ﬁ;\

VRN BN

Figure 3: The projection of the lowest-order trajectory into the ¥ —H plane.
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The first equation says that the guiding-center moves along a
field line without deviating from it, the drifts having vanished
for ¢ = 0. The second and third equations show how the parallel
and perpendicular energies interchange in the usual mirror manner.
The motion is the five-dimensional space (P, £, H) is a closed
loop; the projection of the loop into the £ — H plane is double,
as illustrated in Fig. 3.

The y' variables are to be chosen as constants of the motion
along this path. One component of’x‘ is naturally taken as the
energy K = (22 + Hz)/2. Another component is the magnetic moment,
and in accord with the technique of choosing the‘X variables as
constant as possible, we use M = 22/25(5) + eMq, where M; is
given in (18). The final two components of y' are a(P) and b{g),
where o and B are two functions of position, constant on each
field line, such that the vector potential A is aVp and B is VaxVe.
(See references 7 and 8). Since the lowest-order motion is strictly
on a field line, o and B are sutiable for'x' components. The angle
variable v' we define as the fraction of its total longitudinal

oscillation period T the particle has completed:

1 g‘ é(gl).dgl
v' (s, H, P) = ==+ ya—, z
2 T(Z,H,P)J it [ g N I }%



where the path of integration is along the field line on which P
is located, and BO is a zero of the denominator. For the oscil-
latory case we are considering the denominator will vanish at
two pointsfgp and‘£1. For definiteness, chooselgo as the one at
whichAEVis directed towards rather than away from the other, as
in Fig. 4. The period T is twice the integral from‘go to 31. The

]
positive sign in the denominator is to be used when integrating
from Po to P, and the negative sign on the return. A point on a
field line has two values of u' whose sum in unity. It should be
noted that the denominator in the integral (20) is not exactly
the parallel guiding-center velocity at P'; it is to lowest order
only. From (14) the parallel guiding-center velocity is

% = 2L Gy - d) VL + EE (ML:UL).

§r>

This can be solved for H, which can then be substituted into

2[K — (Mo + eM)B]. The result is

2 aa ~n N
2[K - (Mo + eM;)B] =[_'v"2 + eV, 2% (M —MN):VL] + 0(e?). (21)
Therefore the denominator of (20) is not exactly v,. When v, is not

I [\

too small, the square root of (21) may be expanded to give

+HeMo (MM —MN) VL + 0(e?).

2*(1( —MB)i = v



In the special case where B:VX B = 0, the difference

1 S
between the parallel guiding-center velocity and +27(K —Mh):

PN

does vanish. The reason is that Qg& '7§&>:V§ equals (é/B)-ng.

The vanishing of E'VXE is the necessary and sufficient condition

for the existence of a family of surfaces orthogonal to the‘E field.
Simplification sometimes appears in adiabatic theory when this
condition is met. For two other cases, see reference 7, pages 30
and 70.

In Fig. 4, the guiding center is shown reversing its parallel
velocity at P; (i.e. at v' = &) because by (21) the denowinator of
(20) vanishes up to terms of order ¢® when vy = O)and Pq1 is defined
as a zero of the denominator. The order ¢° difference is invisible

to the order to which we are working.

The equations of motion (14) in terms of(y', u') are

A~

é: é 'VB>

M = 0(e?), (22)
]-(':. 0(€2)

L. l

v o= T

where the dots mean d/dt and where’g is given by (l4a); ¥, H, and P
are to be expressed in terms of (uj B8, M, K, v'), a procedure that is

in principle possible given the form of the field.
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U'-_.-O,]-
P ON THIS SURFACE

GUIDING CENTER
TRAJECTORY

RING OF
CONSTANT z'

GULIDING CENTER
AT t = O

Figure 4: The geometry used in the calculation of the second adiabatic invariant.



By using the systematic method for finding the'%' variables,

we obtain

' 1

z1' =« +T@S‘l§M) ‘F:du[‘['odu“é(u")-Voz(-u") —A?(u}-VO(u)] + 0(e?),

1

il

st =B+ T(agg) [P0 aur B(w) P (w) —E(0) Ta(0)] + o<,
(23)

zi' = K +~ 0(e?),

z3' =1 + 0(e®) = Mo + eM; + 0(e?).

1 »
The integral Iodxﬂg(u"}Va(u“) is (to the order needed) the average of
@ over the unperturbed path and will be denoted <&>, and similarly
for é. The equations of motion for thela' variables have not been
obtained from (14) because they are not needed in calculating the
second invariant.

The second invariant (since p — my + eA(r)) is
e .

i%{zg = -i' Lr;du{e‘m’.(?.', v'y ¢) + Alr(z', v, ¢>]} - i&(z'gu‘,’" ), (24)

where (7) has been used and the integration variable switched to v'
from ¢'. The integral (24) is independent of ¢. The range of

integration for either ¢' or u' is O to 1. The right side of (24)
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must be evaluated through order € so as to get the J; term of the
series Jo + €Jy + -~---~= . The contribution to order 1l/e¢ in (24)
vanishes because it is 1/€¢ times the magnetic flux through the
zero-order trajectory. But the zero-order trajectory is along a
field line and back along the same path, thus enclosing no flux.
The contribution to order 1 in (24) will be Jo, so we need up to
and including order €.

To get r(z', v', @) correct through order e’ and v(z', v', @)
correct through order ¢ is straightforward and tediouvs. Great
simplification occurs when we set ¢ = O. When ¢ = 0, v = O also,
as shown by (13d). From (13a-c) we then have that P = o, T = o,
and H = 1. In fact according to the general theory these are

exact relations (to all orders in ¢) when ¢ = O. Then from (11)

y 220 oot PRIV
_p - p e 4_6%&_%* 0(e?),

Moo AT B B(2) \
(25)
~ ~ - - CoT a2 TN
v = H,.L..(E) + ZE(.E) - H‘.IT‘(E) + Z§(£) _ M _M n 0(€2)'

50 BE) ~ B(R)

The next step is to express (P, £, H) in terms of Q&', v'). In
principle it is possible to invert the definitions of the (y', u')

‘
N

to get (3’ %, H) in terms of (y', v'). Let

P - R(o, B, M, K, U") (26)
be the formula forlg obtained by inversion. ThenAE(E', v') is
obtained by substitution of (23) into the funtion R and then Taylor-

expanding:



]
,g(”%', v') = R(z1', 22", z3', z4', v') - T(<i>v —j &)
. -
OR (21", 2z2', 2za'y zu'y V')~ T(-A>0'~ {'U 8) 3R (27)
3z TO 3!

where the T, &, and B are to be expressed as functions of (Ex, v').

Consider the contribution of the vector potential to the integral

in (24):
L . " ezzz(rjl'Vl:d " 3 r'P - 62}2
j‘odu AI}‘E%(EAI, U) —622'1(3) +_BZ-—M n ‘j UL:M A
a2 (v O P
+§E§_ (M- —m;?_B) , (28)

where E(a', v') is to be replaced from (27). Since the integral

(28) is needed through order ez, it seems that the €° term of‘g(a', v')
would be needed. As the following analysis will show, neither it

nor (e?v?/B?) (é:Vﬁ -ﬁé;VB/B) contributes and all of the order €?
contribution to the integral arises from the products of first order
terms. The path of integration is at constant z'. Varying v' at
constantif does not make r(z', v') follow a field line unless

M pas

ofr(z', v')] and B[E(z', v')] are independent of v'; but they do depend

on v'. 1In fact
o el
ofr(z', v')] = z' — T{<i>v' —-[u&) —~b; V(R) » (29)
A U’O
and

Blr(z', u)] = 22! ~Tiagov' - [U'8) - B (30)
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The ring of constant z' might look as in Fig. 4. The
vector-potential integral in (28) is the magnetic flux passing
through this ring, and that is the negative of the double integral
Ifdadﬁ over the ring, because'é is aVB. In an o — 8 plane the ring
might look as in Fig. 5. The double integral is the area of this

ring, which by a little geometry is

J’.J.dade = %j;du'{[B(,Z,', U|) "'B(”Z:s O)]%%l —[Q(Els U') - Q(E", O)]&

du's’
(31)
where o and g are given in (29) and (30) as functions of (z', v').
The difference ¢(z', u') —alz', 0) is order e, since the zero order

of each is z,'. Moreover ag(EJ, v') /v is order €. Similar
statements hold for E(E" v'). These facts are also clear from Figs.
4L and 5, where the deviation a(g', v') — d(g}, 0) of the ring from
the v' = O field line is due to the drifts, which are of order €. To
summarize, (31) vanishes through order € while its €® part comes only
from the products of € terms.

We will next show that only the ez(ﬁ'VaJ/B and ez(ﬁ°VB)/B terms
of (29) and (30) contribute to (31); products of € terms coming from
the & and B parts all cancel. Substitution of (29) and (30) into (31)

gives

[[dads =-T2-2J';du' [ (<>’ _Jr‘U'S')(<&> - &) - (<ou _J“z'd)(é{» ~8)]

o]

0 au!

1 3 ' _"“ . \ ', "_
set [av(sv - (V2 Bte (o= [79) B BLE
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Figure 5: An integration ring in the g — § plane.
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FE [ -0 BB (g g ;M.,_Vq]
0

B B

- o [ - (B )y - -0 @)

1. 1. .
The last integral vanishes because Io(<a> -&) = fo(<p> -g)=0.
The second integral in (32) can be integrated by parts, and after

some cancellation one finds

1
5 1 . A i -
J‘éog‘% du' = - Hdozda = eTJ"Odu% [ (<g> —B)}:["Va — (<> - &)MY3]
o}
T2 - . L.
+ 5 (<g><au'> — <¥><gu'>)

+ T o t<ieaug () - <e>(Mdura(un)]
0 o} 0

+ ?2 I1dU|[é(U')IUéU"&(U“) - &(U')IUéU"é(U")]. (33)
0 o o

We proceed to show that the terms with T? give zero. In the second
T? integral interchange the order of the v' and V" integration to

get

j;du'<&>j‘;éunp'(un) - <&>J‘;duué(u-'><1 _ U)o <G<p> — <G><BU>  (34)

and similarly for the other part of the integral. Thus the T? terms
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in (33) become

12 cicin'> — <arcu'> ~ 3 au' [ aualu)e(un) - (vt i3],
0 0 (35)

Further progress depends on a theorem: Given two functions f(v) and

g(u) such that £(1l-u) equals f(u) and g(1-v) equals g(1) - g(v).

Then [‘;dug(u)f(u) = %g(l)fduf(u). In (35) the first term is

f;éf;&u'. Clearly, v' is Z g function. Also, @ is an f function;

this is because 1-v' is the same point on the zero-order field line

as v', and the drift velocity’which produces & and élis independent

of the sign of the parallel guiding-center velocity. Application

of the theorem now gives f1du'a<&u'> = %<&>, and similarly <éu'> = §<é>.

And so the first two terms gf (35) cancel. 1In the last term we have

f;du'é(u')fzéu”&(u“), where é (v') is an f function, and Izéu"&(u”)

is a g function of its upper limit. Application of the theorem yields

j;du'é(u')fZéu”d(u") = %<&><é> and similarly j;du'&(u')jzéu"é(u“) =

%<BQ>'<c.x>° Thus all the T® terms disappear and the ¢ contribution of

the vector potential to J(Ef)/m is

1
Llare(er, w7 - Mﬁéﬁﬁdua , Tjodu-B@) [(<8> - 8)M(R)*V(R) -
(o]

(<> — &)M(R)-UB(R)]. (36)

In this expression R means ‘&(21', z2'y z3', z4', U')’and T is

-]-__ . .
[2z3' B(g)]? to the order needed. The ¢ and B are to be expressed

as functions of z' and v'.
Vauad



We now turn to the evaluation of the integral in (24) containing

the velocity. Substitute x and X‘from (25) into (24):

iz
g
i
(]
™
<)

SO du' = | du'[}ﬂ;(g) + 7
“0

2v.0N |- 1 Y esM .
S VJ 2 (B ) - el (37)
where (E, H, ©) are to be expressed in terms of (z', v'). Equation

(27) gives E(E', v'); H(z', v') and £(z', v') can be obtained by

inverting the definitions of the y' variables and then expressing

y' in terms of (3', v').
The lowest order of (37) is found to be the usual longitudinal
invariant
Jo ') ! % , ! ' % : . 9 ENNL
aa= [+ 2% 2’ - 25! BR)T® L(B) ;&;. dv (38)

where the plus sign is to be used for 04u'=% and the minus sign for
%éu'é;l, because the parallel velocity, which to lowest order is H,
changes sign at the turning point where v' is 2. he plus-or-minus
sign is essential; without it Jo would vanish becauseﬂé’ﬁ&Yanuhas
opposite signs but the same magnitude at v' and l-u'. Because of it,
many terms in J; willlvanish due to the symmetry properties of their
integrands.

The ¢ part of (37) is not difficult to calculate. Many terms

vanish due to the symmetry of the integrand. A sample term is
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1 .~ A A A
ef 2z3' jﬁ%—M:VN which vanishes because M'VUN is the same at U'

and 1~ v', but 3R/3v' has opposite signs. The result we find for
the contribution of the velocity to J/m is

: , 1 L -
Joavtu(z!s v) e T [idv ()25 2t - 25 BR)IALR) 2

1 g ~

=1 vt = [V'a) S (a2t(a - am) B 2By
. M- ~

+ (<8>u' —f: B) %r[r?'k(u' —23'3)%};' f{%]

v (<> —d)ﬁ(g)‘;ﬁ% (225'8)%

s (> - B)N(R) 5By (2257m)%

M A

1 ~ A ~ ~ A ~
223' ' a&VM R aﬁ* At :
m-ejodu'(i)2§(24' _-ZB'B)%( B )%lkau': A Bu'JE'V#J' (39)

The last integral vanishes because 3R/du' is parallel (or anti-parallel
to L and LL:VM + ML:VL = L-V(L'M) = O.
wA M % Ana A
When (36) and (39) are added there is a term containing the
factor [(N-3R/dz1') + (&jVB/B)] which vanishes because of the relation

(see reference 7, page 51) VYs8/B = L X 3R/3z,' which holds for these

(o, B) systems. The result for J(z') is
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= f;du»(i)zétz‘@' - z3lB(5)]%?E( ) _a&l. —Tj';du'{[<0'l> 0"

-~ du

f &(z', v)du) az v+ [<B>U ‘I f’ z's v")du"] azz } (40)

[@)24(a! —2'm) 3 2B 4 oe?).

J(z') can be expressed in terms of the (y', V') variables,
which have more physical appeal than the 3: ones. The reversion
is not too difficult if liberal use is made of the theorem regarding

f and g type functions. We give only the result:

ig&'—’l— rdu”(;{- 2‘;5{1( ~ MB[R(@, 8, M, K, v") Jl%L(R) SR

aU"

M, K) f;du"[<é>&(l" ") - <> 3'(3(', v')] + 0(e?), (41)

Definitions and equations needed to interpret Eq. (41) are:

31': a vector with components o, B, M, and K.

V't defined in Eq. (20).

o and B: functions of position, constant on a field line, such that
A= avs.

M: the magnetic moment constant through order ¢, given by Eq. (18).

K: the particle energy, (2® + HZ)/2.

T: the period of oscillation, defined below Eq. (20).

a(y', v') and é(zﬁ v'): the rate of change of o and B due to the

Py

drifts, and given by Eq. (22) and (l4a).
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<o>: the rate of change of « averaged over a longitudinal

1 .
oscillation and given by r du'a(y', v').
0

<é>: similar to <&>. Thus <g> and <é> are functions of‘z' in
Eq. (41).

P H’,B: the guiding-center variables, defined by Eq. (13).

R(a, B, M, K, v'): defined by Eq. (26).

L: the unit vector B/B.

€: mass to charge ratio m/e.

The first integral (41) contains € terms in M, which is Mo + eMq;
for a given M and K the integral is a function of only o and 8 --

i.e., of the field line on which the guiding-center is located,

rt

and not of u', which gives the position along the field line,

The integral is taken between zeros of K —-MB(E), even though

the guiding-center never actually moves along the lineGy, B) between
these "virtual' mirror points, C and D in Fig. 6. The guiding-center
will eventually be reflected on some field line, but it generally
will not be the line CD.

The term of J proportional to T? is of order €, since & and é
are of order e¢. It depends on u' through the upper limit of the
integral, and vanishes at v' = O, %, and 1. In fact because eM;
vanishes when vy = O, the entire ¢J; vanishes at the mirror points.
Thus the guiding-center trajectory will look somewhat as in Fig. 6,

oscillating about the surface of constant Jo, but always coinciding

with it at the mirror points. In the figure, the dotted part of the
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Figure 6: The guiding center oscillates about the surface of
constant Jg.
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trajectory iies below the Jo surface.

As shown by Eq. (21) the radical ¢2%(K —-MB)%'in the first
term of J/m is not the parallel guiding-center velocity through
order ¢. However the integral over a complete period of the
difference does vanish; the order € term on the right side of (21)
is proportional N and therefore has opposite signs in the ranges
u' = 0 to ¥ and ¢ to 1, whereas ié‘éﬁlau' has the same sign.

Thus the integral of the order € difference vanishes by symmetry.
For a similar reason, even the term of M; that is porportional
to H would contribute nothing to the integral, leaving only the

eML:ULH*T/B* ternm.

IV: DIRECT DERIVATION
Verification that d{(J/m)/dt = O(ez) will serve as a check
on the result and at the same time suggest a direct derivation of

J that shortcuts much of the present work. We have

. ) .
Tor= ) )+ 0 (D) + o) (42)

So we need 3(J/m)/dx and 3(J/m)/d3B correct only to zero order,

since & and B are of order ¢. In reference (3) it is shown that

9 Jo T ¢
3 m = "¢ B

(43)
8 Jo T _;



-34_

Furthermore, U' is 1/T and 3(J/m)/du' equals (T?/¢)(<R>d — <&>B).
Putting it all together gives what we want: d(J/m)lt - 0(e?).
The direct derivation goes as follows: start with the time

derivative of the lowest order J,

J . 9 J Q9 J . 0 J
jng=da—a;,g+sg§f+m%f+0(ez), (44)

&l

and by (43) convert this to

d Jo _Trods —gxa 1, 2 do 2

G m = & (B> —&p>] + Mo Mo m + 0(¢%)
t .

B Y tede _ ey, D Jo 2

=3t < jodt[e<a'> a<p>) —eMy =T 0(e“)

where Mo has been replaced by -eﬁ1. The period T, which depends
on time has been placed inside the d/dt because its time derivative
is proportional to the order ¢ drifts, making the error of order et

The term containing M; may be written as

. D Jo 4 o(Jo/m). . d 3(Jo/m)
M Mo w Tac LM TaMe 3 TMar Tame

Because Jo is an integral along a field line, so is 3(Jo/m) /Mo,
which is proportional to <B>, the average magnetic field over an

oscillation. Therefore 3(Jo/m)/dM¢ is changed only by the order ¢
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J
drifts so that eM; 5% é&ékém) s of 0(¢®) and can be dropped.

Transposing all terms of (45) to the left side and integrating

over time gives

Jo_ B(Jg/m
m

t
)TS L L
. , T <t> & _
+ eM; Mo o odt[ B> & -~ <4>P) = constant

or

1 1A t ¢ e . .
5Odu'(i)2§[1< - (Mo + eM1)B]§”I:-§§ + % Sodt[<a>oz —~ <>B] = constant

(46)

At this point we would have the result, except for the fact that
the integral is over time in (46) and so is not a local quantity.
This objection can be circumvented by realizing that the correction
e€Jq1 to Jo should be small, which means that the guiding center
should be distant only order ¢ from the surface on which Jg is
constant. The time integral from A to F in Fig. 6 can be replaced
by the integral from C to F along the instantaneous field line, and
finally we have (41). The u'-dependent term is just the effect of
the drifts, and the total eJ; arises from this and from the correction
of the lowest-order magnetic moment.

The direct derivation also reveals that the closed field-line
case must yield the same expression for J; as the oscillatory case,

which has been considered to this point. 1In the closed field~line
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case, the guiding center traverses the line always in the same
sense, parallel or antiparallel togg, but with varying speed,
depending on the magnitude of.g. At the same time it drifts
slowly at right angles to the line. There is nothing in the
direct derivation that relies on the oscillatory motion, thus
we may conclude that the form of the expression (41) for J will
be unchanged; y' may be taken as O and 1 at an arbitrary point
on the field line, and only one of the plus-or-minus signs will
be needed.

There is however a difference between the oscillatory and
closed field line cases - namely, that the order ¢ difference

between the integral of v, and of =% 2%'(K —-MB)& no longer vanishes,

Il
and the first integral on the right side of (41) may not be replaced
by §v“ds, nor may the part of eM; that is proportional to H be
omitted.

The direct derivation also raises the question of why the time
derivative of the magnetic moment (as in Eq. 44) did not need to
be considered in earlier proofs (references 3 and 7) of the con-
servation of Jg. The answer depends on whether Jo is defined with
(K —-MoB)% or with (K -MB)%, which includes some terms of order ¢.
If the former, the proofs should indeed consider the effect of ﬁo,
Since the proofs show only that <d(Jo/m)/dt> - 0(62) -- i.e., that
Jo is only conserved on the average, it is only necessary to show

. . . T -
that <Mg> vanishes. This is easy to do: <Mo> =—=<eM{> = <€/T)S dtM, =
)

(e/T)AM;, where AM; is the change in M; between the time the guid-
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ing center leaves one mirror and (to lowest order) returns to
it again. But from (18) this change is zero because M; is
zero when H is zero. If on the other hand Jo is defined with M
instead of Mo, previous proofs are valid. In practice, defining
Jo with M is preferable because of the use to which Jo is usually
put. The invariance of Jg is often used to determine the surface
on which the guiding-center moves on the average. In a numerical
calculation to find the surface one picks a number representing
the magnetic moment and holds this number constant, so that in
effect one is using Mo + eM;.

The above discussion leads to the final subject to be treated—
namely, the order to which the second invariant is conserved.
Since Jo is an integral along a field line, the parallel velocity
does not change it, and therefore d(Jo/m)dt = O(e): Jo is trivially
conserved to lowest order and is affected by the drifts, which are
of order ¢. The usual proof of the invariance of Jo (ref. 3) does
not show that the ¢ term is zero, but only that its average vanishes:
<d(Jo/m)/dt> = 0(32). So far it would not matter whether the com-
plete set of equations (l4) were used or the hybrid set (17). The
drifts are the same for each, and these are what are involved in
the proofs that Jo is conserved on the average. In the present
paper we Lave shown that (1/m) d(Jo + e€J;)/dt = 0(¢®) without
any averaging involved, but the full set of equations (14) must be

used in order that dM/dt = 0(¢?).
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